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Leading flood loss estimation models include Federal Emergency Management Agency’s
(FEMA’s) Hazus, FEMA’s Flood Assessment Structure Tool (FAST), and (U.S.) Hydrologic
Engineering Center’s Flood Impact Analysis (HEC-FIA), with each requiring different data
input. No research to date has compared the resulting outcomes from such models at a
neighborhood scale. This research examines the building and content loss estimates by
Hazus Level 2, FAST, and HEC-FIA, over a levee-protected census block in Metairie, in
Jefferson Parish, Louisiana. Building attribute data in National Structure Inventory (NSI) 2.0
are compared against “best available data” (BAD) collected at the individual building scale
from Google Street View, Jefferson Parish building inventory, and 2019 National Building
Cost Manual, to assess the sensitivity of input building inventory selection. Results suggest
that use of BAD likely enhances flood loss estimation accuracy over existing reliance on
default data in the software or from a national data set that generalizes over a broad scale.
Although the three models give similar mean (median) building and content loss, Hazus
Level 2 results diverge from those produced by FAST and HEC-FIA at the individual
building level. A statistically significant difference in mean (median) building loss exists, but
no significant difference is found in mean (median) content loss, between building inventory
input (i.e., NSI 2.0 vs BAD), but both the building and content loss vary at the individual
building scale due to difference in building-inventory-reported foundation height,
foundation type, number of stories, replacement cost, and content cost. Moreover,
building loss estimation also differs significantly by depth-damage function (DDF), for
flood depths corresponding with the longest return periods, with content loss differing
significantly by DDF at all return periods tested, from 10 to 500 years. Knowledge of the
extent of estimated differences aids in understanding the degree of uncertainty in flood loss
estimation. Much like the real estate industry uses comparable home values to appraise a
home, flood loss planners should use multiple models to estimate flood-related losses.
Moreover, results from this study can be used as a baseline for assessing losses from other
hazards, thereby enhancing protection of human life and property.
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INTRODUCTION AND BACKGROUND

Flood is one of the most damaging natural hazards, causing
massive destruction to property, floodplain structures, and
agricultural lands. National Severe Storms Laboratory (2021)
recognizes five main types of flooding: 1) riverine, which
occurs when excessive precipitation in the higher reaches of a
watershed causes a stream to overflow its banks; 2) coastal, which
is caused by high tides and/or onshore winds often exacerbated by
heavy rainfall; 3) storm surge, associated with landfalling marine
storms, often accompanied by strong winds and rain; 4) inland, in
which persistent precipitation accumulates locally or a stream
overflows due to an ice or debris jam or the failure of a dam or
levee; and 5) flash, in which water rushes downslope during an
intense local downpour, levee or dam failure, or sudden
unclogging of an ice jam or debris blockage. Multiple types of
floods may be occurring simultaneously in a given location,
creating a compound flood, such as when high tides of coastal
floods and storm surges are met by riverine floods from inland
precipitation.

Approximately 99 percent of U.S. counties were affected by
flooding of one or more of these types during the 1996–2019
period (FEMA 2021a). According to National Oceanic and
Atmospheric Administration (National Oceanic and
Atmospheric Administration, 2020), the 33 flood events in the
U.S.A. from 1980 through 2020 that each caused more than $1
billion in damage (consumer price index- (CPI-) adjusted to
2020$) were responsible for a total of more than (CPI-adjusted)
$151.2 billion in U.S. damage. Recent estimates suggest that
perhaps three times more Americans (41 million) live within
the 100-yr floodplain than suggested via Federal Emergency
Management Agency (FEMA) flood maps (Wing et al., 2018).

Property loss (Mostafiz et al. 2020a; Mostafiz et al. 2020b)
estimation from floods is important for assessing risk and
therefore improving planning efforts to mitigate this hazard.
However, such loss estimation from flooding is extremely
complicated for several reasons. First, many components of
loss must be considered, including direct losses such as to
infrastructure, agriculture, and transportation, in addition to
indirect, non-property losses such as missed work and
productivity, and items of sentimental, non-quantifiable value.
Second, many losses, particularly the uninsured losses, are
uncatalogued. Third, because the different types of flooding
(i.e., flash flooding, riverine flooding, storm surge flooding)
include order-of-magnitude differences in the various types of
losses, flood loss evaluation does not fall into a “one size fits all”
methodology. As a result of these difficulties, despite the
importance of having accurate and precise flood loss
information, existing data are often inadequate and impossible
to validate due to the lack of accurate empirical data.

Two major flood loss models – FEMA’s Hazus (Schneider and
Schauer 2006) and U.S. Army Corps of Engineers (USACE)
Hydrologic Engineering Center’s Flood Impact Analysis (HEC-
FIA; Dunn 2000) – are widely used in the U.S.A. Another
promising model – FEMA’s Flood Assessment Structure Tool
(FAST; FEMA 2021b) – introduced in November 2019, is likely to
become commonly used. Among the two leading flood models,

FEMA’s Hazus, introduced in 1998 and now incorporating three
“levels” of analysis based on the sophistication of input and
output data (Figure 1), incorporates estimates of flood damage
to structures, but also to agricultural and utility infrastructure,
transportation networks, and other flood-related impacts. Hazus
has been shown to be a valuable tool for flood adaptation
planning (Banks et al., 2014) and has been used widely in
recent years. Such applications include examining the
advantages of levee setbacks (Dierauer et al., 2012), assessing
feasibility of flood relocation (Cummings et al., 2012), cost-
benefit analysis of floodplain conservation (Kousky and Walls
2014), evaluating potential for bridge scouring (Banks et al.,
2016), comparing urban vs rural flood vulnerability (Remo
et al., 2016), validating other flood estimation methods
(Gutenson et al., 2018), estimating modern hurricane-induced
flood damage in the context of historical hurricanes (Paul and
Sharif 2018), determining impacts of sea-level rise (Ghanbari
et al., 2020), and assessing community flood resilience (Allen
et al., 2020). Sensitivity analysis on the various input functions in
the flood component of Hazus has suggested that the choice of
digital elevation data is important (Tate et al., 2015) and that the
DDF, flood level, and restoration duration all affect model
sensitivity (McGrath et al., 2015).

HEC-FIA has also been used widely in the last two decades.
Nafari (2013) elaborated on advantages and disadvantages of
HEC-FIA for flood damage assessment. Prominent among the
advantages of HEC-FIA software is the ability to incorporate
quantitatively an estimation of consequences with uncertainty,
thereby estimating and comparing the benefits of existing and
future flood risk management measures (Lehman and Light
2016). HEC-FIA also has the advantage of providing separate
estimates of direct economic, indirect economic, agricultural, and
life loss consequences for flood hazards, by incorporating
structure inventory, geospatially and externally derived flood
depth grids, and depth-damage functions (DDFs; Lehman
et al., 2014). An additional feature is HEC-FIA’s ability to
incorporate information from other USACE software, such as
the River Analysis System (HEC-RAS) for hydrograph-based or
geographic information systems-based estimation of
consequences for life and property (Dunn et al., 2016).

Prominent applications for HEC-FIA have been in dam safety
(McClelland and Bowles 2002; Needham 2010) and other risk

FIGURE 1 | Schematic of information involved in each level of Hazus
(modified from FEMA 2018).
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assessments. For instance, Mokhtari et al. (2017) used HEC-FIA
to identify vulnerable buildings and croplands, and estimate
property and crop losses, in the Ghamsar watershed of Iran
for different flood return periods. HEC-FIA has also been used in
recent years to predict storm surge impacts (Brackins and
Kalyanapu 2016), compare the variation of loss using different
sources of digital elevation models (DEM; Bhuyian and
Kalyanapu 2018), and validate a new flood loss model
(Gutenson et al., 2018).

While the major existing flood loss models are helpful, their
utility is limited by three major factors which produce research
gaps in the literature. First, at the macro-scale or in study areas
with unavailable local input data, their accuracy relies on data
from the national-level building inventory. For example, the
National Structure Inventory (NSI; https://github.com/
HydrologicEngineeringCenter/NSI) provides general
information about individual buildings, such as number of
stories, foundation type, first-floor height, building type,
occupancy, building replacement cost, and content cost.
However, data from NSI are incomplete and are often only
estimated based on features observable from remote sensing.
First-floor elevation is particularly important for assessing
potential flood losses, but these building data sets fall short
because they rely on Light Detection and Ranging (LIDAR)
data that may be older and less accurate than more recently
collected data at the micro-scale, particularly in areas that are
subject to subsidence, such as Louisiana. Thus, improvements in
estimation accuracy of flood loss requires more comprehensive
input data at various spatial scales to enhance current
understanding. The result is a research gap at the micro-scale.
Data compiled from the Jefferson Parish (Louisiana) building
inventory (JPBI; Jefferson Parish Geoportal 2021) is an example
of a source that offers hope for improved loss estimates for
individual buildings, if such collected data and other available
data would be used in the flood loss models.

Several potential improvements to the national-level building
inventories have gone underexplored, to date. One is the use of
ground-truth data, such as Google Street View® (GSV, https://earth.
google.com/) and Zillow® (https://www.zillow.com/) for input into
flood loss models. GSV can be used to determine the number of
stories and first-floor elevation perhaps more accurately than
existing national-level building data sets. Likewise, Zillow, which
provides information on number of stories, building square footage,
property value, and other information, may allow for more accurate
flood loss estimates. Both GSV and Zillow require visual
interpretation of ground-based imagery to determine first-floor
elevation and manual recording of building data. Finally, the
2019 National Building Cost Manual (NBCM; Moselle 2018)
provides localized construction costs, which may assist in
calculating building replacement cost of structures due to flood.
Assembly of a “best available data” (BAD) database that includes
information from these sources can enhance flood loss estimates and
address this gap.

Another important component of flood lossmodeling is accuracy
and proper selection of theDDFs. Typically, a floodmodel includes a
set of default (i.e., non-site-specific) DDFs, which are percentages of
building (and, separately, content) damage as a function of flood

depth in the building, with one default function for each
combination of building inventory attributes (e.g., one-story
residential building with no basement). All too often, users may
run the flood loss estimation model with the default DDF without
considering the implications of this “one size fits all” assumption,
which can contribute to inaccuracies based on the quality of building
inventory data upon which such a default DDF rests. Each DDF
requires accuracy in the unique set of building attributes, so the
appropriateness of the DDF selection depends on the type and
accuracy of the data in the building inventory thatmust be input into
the DDF calculation. The generalized set of default DDFs in the two
leading models (i.e., Hazus (which uses the same set of default DDFs
as FAST) and HEC-FIA) differ substantially from each other, even
for the same building attributes (e.g., one-story, single-family,
residential home with basement). A thorough examination of the
sensitivity of estimated flood losses to the DDFs between the two
leading models is lacking in the literature. While it is possible to
overwrite the default DDFswhen running eitherHazus orHEC-FIA,
it is difficult to know which DDFs to use in micro-scale analysis.

Another research gap regarding studies using the leading flood
loss models is that they tend to ignore local idiosyncrasies because
their purpose is usually to plan for and protect an entire county,
state, or country. Yet variation within the spatial scale of analysis
can be very important at the neighborhood or individual building
scale. While there is a trend toward more spatially-integrated
flood risk management in many countries (Bubeck et al., 2017),
only a few comprehensive studies have evaluated the flood risk
methodologies at the micro-scale, especially for individual
buildings in a census block.

This study is motivated by the need to identify the effects of
building features (i.e., building inventory), model selection, and
the DDFs used in estimating building and content losses due to
the flood hazard. The results of this study explore the extent to
which the results of neighborhood-level Hazus, which has been
widely used in flood studies, corresponds with the results from
building-level FAST and HEC-FIA models. More specifically, the
contribution and objectives of this research are to show the extent
to which, at the neighborhood-scale:

1) a localized building inventory assembled from GSV, Zillow, a
local parish (i.e., county)-level building inventory, and
localized information from the 2019 NBCM differs from
the national-level building inventory (i.e., NSI 2.0); the null
hypothesis is no difference of means.

2) flood loss estimations differ among Hazus Level 2, FAST, and
HEC-FIA, when all are using the same building inventory
(i.e., NSI 2.0 or BAD) and DDF; the null hypothesis is no
difference of means among the three.

3) improved, customized local building inventory information
acquired in (1) above improves the within-model
performance of Hazus Level 2, FAST, and HEC-FIA
(separately) while using their respective default DDFs, over
NSI 2.0; the null hypothesis is no difference of means.

4) the default DDFs inHazus Level 2, FAST, andHEC-FIA produce
different results from each other when they are switched among
these three models with all keeping the same building inventory;
the null hypothesis is no difference of means.
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In general, the results call attention to model sensitivity to the
input parameters and DDFs, which will aid in assessing
vulnerability to losses in local flood planning and decision-
making.

MATERIALS AND METHODS

Study Area
Census block 220510220012004, in levee-protected, suburban
Metairie, Louisiana, United States, which consists of 29 single-
family residential dwellings (Figure 2), is selected for this
analysis, for several reasons. First, Metairie is a densely-

populated area that lies in a severe hazard area for flooding
due to local rainfall that is expected to become more hazardous
over time. Second, the availability of recently-collected flood
depth grids at multiple return periods (i.e., 10-, 50-, 100-, 500-
yr) for Metairie facilitates probabilistic analysis of the flood loss-
return period relationship. Several flood and hurricane events in
recent decades in this community have led to increasing amounts
of floodmitigation spending and flood payouts each year (Coastal
Protection and Restoration Authority (Coastal Protection and
Restoration Authority (CPRA)) 2012; Taghi Nezhad Bilandi
2018), including many properties that have sustained repetitive
flood losses (Ergen 2006; Mattei et al., 2009; Kick et al., 2011) on
subsiding land (Zou et al., 2016). This census block is selected

FIGURE 2 | Study area census block in Jefferson Parish, Louisiana, with building footprint polygons and a gray rectangular dot in the index map.
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over other nearby census blocks because some part of it is
expected to flood at every return period analyzed. Additionally,
this census block is advantageous for study because it is bounded by
easily identified roads, to ensure accuracy in analysis. Finally, the
uniformity of building types (i.e., 100 percent residential, the
subject of this study) offers ease of analysis because the same
DDFs can be applied for the entire analysis.

Data
de Moel and Aerts (2011) noted that flood loss assessment
requires input from four types of data: (1) magnitude of the
flood hazard, which is provided by a flood depth grid; (2) land use
type (e.g., residential, commercial, agricultural); (3) economic
value of the object(s) of interest; and (4) DDFs, which, although
not required, can improve data analysis over space. In practice,
for property loss analysis, (2) and (3) above are often combined in
a building inventory. Hazus, FAST, and HEC-FIA require these
three components – flood depth grid, building inventory, and
DDFs – to calculate the damage for an individual flood event
(Table 1).

Flood Depth Grid
Flood depth grids for four available return periods – 10-, 50-, 100-,
and 500-yr – for Jefferson Parish, Louisiana, were developed at a
scale of 3.048 m × 3.048 m, by FEMA through its Risk Mapping,
Assessment and Planning (Risk MAP) program (FEMA 2021c).
These data are input into all threemodels examined here (i.e., Hazus
Level 2, FAST, and HEC-FIA). While the complexities associated
with Risk MAP products have been identified (Johnson and
Maloney 2011), these model-output data represent the best
available input for understanding the flood risk.

Building Inventory
Building inventory consists of information about the
fundamental features about each building, including, but not
limited to, foundation height (first-floor height), foundation type,
number of stories, square footage, building replacement cost, and
content cost. The unavailability or inaccuracy of data regarding
the building inventory variables listed above is among the most
important barriers in flood loss studies (Taghinezhad et al.,

2020a). Among the leading flood loss models, Hazus
incorporates the General Building Stock (GBS) building
inventory data set (Shultz 2017a) as the default input. FAST
and HEC-FIA require input of building inventory data by
the user.

Here, these data are considered from six sources (Table 2).
The two national-level databases – GBS and NSI 2.0 – offer
advantages of completeness but are disadvantageous because
their accuracy is compromised where local-scale attributes
might improve estimates of building damage. For example, use
of GBS data has been observed to provide severe overestimates of
replacement cost (Shultz 2017a), and the need for adjustment has
been emphasized (Shultz 2017b). Furthermore, only five
buildings in the study area are included in GBS, leading to
further concerns that GBS may not represent the study area well.

NSI is a structure-specific building dataset for the continuous
United States. NSI 2.0 was developed from many sources,
including Hazus, USACE, U.S. Geological Survey, National
Center for Education Statistics, U.S. Census Bureau, Microsoft,
Esri, and Homeland Infrastructure Foundation-Level Data
(Barnett 2010). Availability of NSI 2.0 is typically limited to
approved federal government applications and academic work
such as this research. NSI 2.0 may prove useful, but its very recent
release and its restricted availability leaves its utility largely
untested.

Because of the uncertainty of NSI 2.0, this research collects and
incorporates building attribute data not only for running FAST
and HEC-FIA, but also for Hazus Level 2, for comparison
between model runs using NSI 2.0 data vs that assembled
from four local-level databases – Zillow, JPBI, visually-
interpreted GSV imagery, and 2019 NBCM. These local-level
sources may provide enhanced local-level accuracy but fail to
include all of the variables needed for Hazus Level 2, FAST, and
HEC-FIA. Therefore, an original data set named BAD is
assembled here using the attribute data available from a
compilation of each of these four data sets; the BAD is then
input into the three models for comparison against runs using
NSI 2.0 input data.

One of the four additional databases considered is Zillow, a
popular web-based platform, typically used to identify property

TABLE 1 | Years analyzed and data sources, for property losses, by hazard in Louisiana.

Variable Hazus level 1 Hazus level 2 FAST HEC-FIA

Input Flood depth Default (generated from stream network) Default or User-
defineda

User-defined (depth
grid)

User-defined (depth grid)

Building Info Default (General Building Stock) Default or User-
defineda

User-defined (NSI
2.0 or BAD)

User-defined (NSI 2.0 or BAD)

DDF Default Default or User-
defineda

Default Default

Analysis Most Localized Scale
Possible

Census block Individual building Individual building Individual building

Output Loss estimate ($) Total and partitioned among building, contents, inventory,
relocation, income, rental, and wage

Same as for
Hazus 1

Building, contents,
inventory

Building, contents, vehicle,
and “other” damage

aHazus Level 2 requires at least one of these variables to be user-defined.
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for sale and evaluate residential real estate attributes. The
underlying data are accessible through the Zillow Transaction
and Assessment dataset (ZTRAX), but in this research, data are
collected manually through the web platform. Because the Zillow-
reported property value combines the land and building value,
and because some attribute data available from Zillow are
incomplete and could be acquired elsewhere (Table 2) to
assemble the BAD, ultimately it was decided that Zillow would
not be used as a primary source in this study, but only to confirm
data from other sources.

The other three data local-level databases are ultimately
chosen for use in compiling BAD. JPBI is provided by the
Jefferson Parish (Louisiana) Department of Floodplain
Management & Hazard Mitigation. These data are useful
because they are collected at the individual building level
rather than being estimated en masse over a swath of
properties. However, as shown in Table 2, the types of
building attribute data available through JPBI are limited. GSV
is another locally collected data source. Direct visual
interpretation of GSV imagery is used to estimate occupancy
type, number of stories, foundation type, and foundation height.
Finally, the NCBM (Moselle 2018, p. 12) is used to collect
construction cost per square foot. Thus, BAD is prepared by
collating information from JPBI, GSV, and NBCM, with the data
sources for each building attribute shown in Table 3. Zillow and
GBS are also consulted to confirm data or resolve uncertainties.

Depth-Damage Functions (DDFs)
Water depth relative to the first-floor elevation is the main
variable in flood loss analysis (Taghinezhad et al., 2020b).

Flood loss functions are used commonly to evaluate the
percentage of loss to the building itself and (in a separate
analysis) contents based on the flood depth variable (USACE
2003; Gulf Engineers & Consultants (Gulf Engineers and
Consultants (GEC)) 2006). While the default DDFs for a given
set of building inventory attributes are the same in Hazus and
FAST, the default DDFs in HEC-FIA for the corresponding set of
building inventory attributes differ substantially from those of the
other models, as shown in the example of a one-story building
with no basement in Figure 3. Moreover, Hazus (but not FAST)
offers alternative DDFs that the user can select to match the
suggested DDF for that set of building attributes. In addition, in
any of the three models, the user can input any DDF, even if it is
not among the suggested alternatives, for use in flood loss
estimation.

Methodology
To address the four objectives, several combinations are tested
against each other, with the following naming convention used.
Building inventory (I) is specified as I1 for NSI 2.0 and I2 for
BAD. The model/software (S) is represented as S1 for Hazus Level
2, S2 for FAST, and S3 for HEC-FIA. The input DDF is denoted
by DDF1 for that provided by Hazus Level 2 and FAST, and by
DDF2 for that provided by HEC-FIA. The damage/loss (L) is
designated as L1 for building and L2 for content. Finally, flood
depth (D) is shown as D1 for 10-yr, D2 for 50-yr, D3 for 100-yr,
and D4 for 500-yr flood return period.

Building Inventory Comparison
Within each of the six features in the building inventory comparison
(i.e., foundation height, foundation type, number of stories, square
footage, building replacement cost, and content cost), all
combinations of options are examined comparatively, in this all-
residential census block. Regarding the first feature – foundation
height, the general egress requirements of the International Building
Code (Ching &Winkel 2018) stipulate that stair risers in residential
uses are to be built to a height between 4 and 7.75 inches. Because
construction using maximum rise is more cost- and space-efficient,
here a stair rise near that of the maximum allowed – 7.5 inches – is
assumed for calculating FFE. Foundation height is calculated from
GSV by multiplying 7.5 inches by the number of stairs. The
difference between foundation heights from NSI 2.0 (I1) and

TABLE 2 | Sources of attribute/data used in this study.

Attribute National-level databases Customized databases checked for possible incorporation in this study

GBS NSI 2.0 Zillow JPBI GSV 2019 NBCM

Latitude and longitude √ √ √ √
Occupancy Type √ √ √ √
Foundation Height √ √ √
Foundation Type √ √ √
Number of Stories √ √ √ √ √
Square Footage √ √ √ √
Replacement Cost √ √
Content Cost √ √
Property Value √
Construction Cost √

TABLE 3 | Sources of best available data (BAD).

Building attribute Source

Foundation height Google Street View (GSV)
Foundation type GSV
Number of stories GSV
Square Footage (SF) Jefferson Parish Building Inventory (JPBI)
Occupancy Type JPBI and GSV
Construction Cost 2019 National Building Cost Manual
Replacement Cost SF × construction cost per square foot
Content Cost For residential: 0.5 × replacement cost
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BAD (I2) is examined at the neighborhood (census block) scale
using pairwise t-test.

The second feature of the building inventory is foundation
type. Because foundation type is a nominal-level variable (e.g.,
slab, crawl-space, pier-and-beam), non-parametric chi-square
tests of independence are used to test the null hypotheses of
no relationship between foundation types in I1 vs I2. The third
feature – number of stories – is available from JPBI, but GSV is
used to compile the BAD data set because it is more accurate and
visible, making the data verifiable. This variable also requires the
non-parametric chi-square test because it is of ordinal level. The
null hypothesis is of no relationship between number of stories in
I1 vs I2. Building area (square footage) is the fourth feature to be
considered. Although square footage can be calculated from the
JPBI shapefiles, it is not possible to calculate areas for multiple-
story buildings. Therefore, square footage data from JPBI is used
here to prepare BAD. The difference between square footage from
I1 and I2 is examined at the neighborhood scale using pairwise
t-test.

The building replacement cost using BAD is calculated by
multiplying the per-square-foot construction cost from 2019
NBCM by the building area from JPBI. Because the average
cost of constructing a single-family residence of average standard
quality class in the New Orleans area is two percent higher than
the national average (Moselle 2018, p. 7), construction costs used
in the calculations here are increased by 2.0 percent over the
values suggested in NBCM. Zillow was considered but ultimately
is not used in this analysis, as it reports land value as part of the
home purchase price. The difference between the building
replacement cost from I1 and I2 is examined at the
neighborhood scale using pairwise t-test.

Finally, content cost must be considered. In the NSI 2.0 data
set, content cost is assumed to be equal to the building
replacement cost. However, NSI 2.0 includes not only
residential structures, but also commercial and industrial
facilities that are likely to contain very expensive and
abundant equipment and merchandise. Because this research
includes only residential buildings in a relatively modest
neighborhood where expensive jewelry and other possessions
are likely to be minimal and vehicles are situated outside of the

structure, it is assumed here that content cost is half of the
building replacement cost. This assumption is supported by
Hazus manual guidelines for similar situations (FEMA 2013,
pp. 6–9). The difference between content cost from I1 and I2 is
examined at the neighborhood scale using pairwise t-test.

Model Selection Sensitivity
To test the hypothesis resulting from Objective 2, the null
hypothesis of equality of population mean (µ; used when the
data are distributed normally, as indicated by a Shapiro-Wilk
normality test) from among the three software/models,

µI�I|S�S1|L�L|D�D|DDF�DDF � µI�I|S�S2|L�L|D�D|DDF�DDF
� µI�I|S�S3|L�L|D�D|DDF�DDF (1)

is examined, again at the neighborhood scale (Eq. 1). To test this
hypothesis, the values of all variables input (i.e., flood depth,
DDF, and building inventory) are the same across model runs, if
that variable is mandatory or optional for the given software.
However, as is shown in Table 4, some variables are not eligible to
be included in some of the software. Thus, any differences in
building and/or content loss resulting from each model output
would be attributable to differences in the structure information
requirements and/or algorithms used in the three software

FIGURE 3 | Comparison of default depth-damage curves for building (left panel) and contents (right panel), used in Hazus/FAST and HEC-FIA, for a one-story
building with no basement.

TABLE 4 | Structure information used in the testing of software, and their
categorization as mandatory or optional.

Structure information Hazus level 2 FAST HEC-FIA

Latitude and longitude mandatory mandatory –

Occupancy mandatory mandatory mandatory
Building replacement cost mandatory mandatory mandatory
Number of stories mandatory mandatory optional
Foundation type mandatory mandatory optional
Foundation height mandatory mandatory optional
Square footage optional mandatory –

Content cost optional optional optional
Building type optional – –

Year built optional – –

Design level optional – –
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modules. It should be noted that even though some additional
variables are optional for input into one or more of the models
(e.g., demographic data, vehicle type, fatalities), such variables are
ignored in this analysis because they are deemed to be only
indirectly related to building/content loss. The sections that
follow provide an overview of how each of the threemodels is run.

Hazus Level 2 analysis conducted in this study relies on user-
input depth grids and user-defined building inventory rather than
the system-generated flood conditions (see again Table 1). The
first step is the generation of the study area (i.e., census block
level). Then, the 10-yr flood depth grid is uploaded as user data.
Next, the building inventory (NSI 2.0 or BAD) is imported under
“User Defined Facilities (UDF).” Then, a new hazard scenario is
created with the flood depth grid specified, and the riverine
floodplain is delineated for a single return period using the
default cell size (3.048 m × 3.048 m). This process is repeated
for the 50-, 100-, and 500-yr flood depth grids to obtain the
results. The DDF can be modified from the “damage functions”
on the “analysis” tab.

FAST, which requires Anaconda for Python and the Hazus
Python package (HazPy), offers improvements over Hazus Level
1, 2, and 3 in ease of use and processing efficiency. For example,
only flood depth grid(s) (in .tiff format) and the structure
attributes/table (.csv) are needed as input. Moreover, Hazus
DDFs/curves are invoked automatically to calculate the flood
loss. A complete explanation of using FAST for flood hazard
assessment analysis is given at https://github.com/nhrap-hazus/
FAST, but a brief overview to allow for replicability of our method
is provided below.

After downloading the “FAST-master” folder from Github™
(https://github.com/nhrap-dev/FAST), the structure table (.csv),
consisting of the mandatory fields of occupancy type, building
replacement cost, building content value, number of stories,
foundation type, first-floor height, total area of building,
latitude, and longitude is built. Then, with the structure table
moved into the “UDF” folder and the flood depth grids (.tiff) of
interest (in the World Geodetic System 1984 (WGS84)
projection) into the “rasters” folder, the “FAST.py” icon is
executed. “Browse to Inventory Input (.csv)” is selected to input
the structure inventory (.csv). Finally, the “Coastal Flooding
attribute” is set to “riverine,” with the appropriate return period
in the “depth grid” box. After “executing,” the output then appear
in the “UDF” folder in .csv format. The DDF of building and
contents can be modified from the “lookuptables” folder.

To use HEC-FIA, the layer files (i.e., study area boundary of
the selected census block, NSI 2.0 data for the census block(s) of
interest) are first converted into shapefiles. Likewise, all raster files
(i.e., DEM and flood depth grids) are converted into Tag Image
File Format (TIFF or TIF), and all shapefiles and raster files are
assigned the same geographic projection system (WGS 1984
UTM Zone 15N).

For risk assessment, after creating and naming a “new study,”
“add map layer” is selected from the “map layers” folder, and
shapefiles are added (i.e., the study area and NSI 2.0 data). Then,
“add terrain model” is selected under the “terrain grids” folder,
and the DEM data are “imported.” Next, a new “watershed
configurations” is created using the terrain grid (i.e., DEM)

that was added. Then, the study area is imported in the
“boundaries” and “impacted areas” folders separately, under
“geographic data,” choosing from “shapefile name.” Under the
“inundation data” folder, “new” is selected and the 10-, 50-, 100-,
and 500-yr flood inundation configuration is created separately
choosing “grid only” under the “hydraulic data type” and
“inundation grid” under “grid only” with the watershed
configuration created earlier. Then, “define event” is selected
for each flood inundation configuration. The DDFs are
imported using the “import from default” option under the
“structure occ. types” folder. Next, “structure inventories” is
selected, along with “generate from point shapefile” (i.e., NSI
2.0), and “use terrain+foundation height” is chosen under the “first
floor elevation source” header. Then, the appropriate “shapefile
fields” that were added from NSI 2.0 (i.e., “fd_id,” “st_damcat,”
“occtype,” and “val_struct”) are uploaded into the “structure
ID,” “damage category,” “occupancy type,” and “replacement
value” inventory fields, respectively. Under “optional data” the
following inventory fields are selected: “content value,”
“foundation height,” “foundation type,” and number of
stories,” and the following corresponding shapefile fields are
selected: “val_cont,” “found_ht,” “found_type,” and “num_story.”
Then, the “new” option is selected within the “alternatives” folder.
The study area is clicked in the “impact area set” line, and the
appropriate flood depth of interest is chosen for the “inundation
configuration,” and NSI 2.0 is selected for the “structure
inventory.” In the “simulation” folder, “new” is chosen, and the
appropriate flood return period is selected in the “alternative” and
“event” fields, with the output sent to the filename specified in the
“name” line. Finally, the “compute” option is selected by clicking
on the name given to the simulation in the previous step. The
results show the aggregate and individual building damage reports,
including both structure and content separately, for the selected
census block. The DDF can be modified from the “structure occ.
types” in the “structure inventories” under the “inventory” folder.

Building Inventory Sensitivity
To address Objective 3, the sensitivity of building inventory
(NSI 2.0 vs BAD) is examined at the neighborhood scale,
changing only the building inventory while leaving the model
(i.e., Hazus Level 2, FAST, or HEC-FIA), loss type
(i.e., building or content), and flood depth by return
period (i.e., 10-, 50-, 100-, or 500-yr depth) the same, with
default model DDF in each comparison, as described by the
Eq. 2:

µS�S|L� L|D�D|I�I1 � µS�S|L� L|D�D|I�I2 (2)

DDF Sensitivity
To address Objective 4, the sensitivity of DDFs is examined,
changing only the depth damage function while leaving
building inventory (i.e., NSI 2.0 or BAD), the model
(i.e., Hazus Level 2, FAST, or HEC-FIA), loss type
(i.e., building or content), and flood depth by return period
(i.e., 10-, 50-, 100-, or 500-yr depth) the same in each
comparison, as described by the Eq. 3:
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µI�I|S�S|L�L|D�D|DDF�DDF1 � µI�I|S�S|L� L|D�D|DDF�DDF2 (3)

RESULTS

Building Inventory Comparison
A total of 28 residential buildings are reported in NSI 2.0, with 29
reported in JPBI and in GSV, in census block 220510220012004.
Both in the NSI 2.0 and GSV data, all the buildings are classified
as “single family dwelling,” but in JPBI, all buildings are showing
the same occupancy type except one (Building ID 457824), which
appears as “miscellaneous.” A summary/comparison of the six
major variables in the building inventory by data source is shown
in Table 5.

As shown in Table 5, NSI 2.0 reports the same foundation
height for all buildings in the study area with the same foundation
type. Mean foundation height is 1.97 feet in NSI 2.0 and 2.17 feet
in BAD, with ranges from 1.0 to 4.0 feet and from 0.6 to 5.6 feet in
NSI 2.0 and BAD, respectively. Because the difference between
the foundation height from NSI 2.0 vs BAD is not normally
distributed (p-value � 0.028 using the Shapiro-Wilk normality
test), the paired samples Wilcoxon test (also known as the
Wilcoxon signed-rank test) is used instead of the paired t-test.
That test suggests that there is no significant difference in median
between the foundation height based on I1 vs I2 (p-value �
0.864). However, at the individual building scale, some
substantial differences exist, as 50 percent of the buildings
(i.e., 14 out of 28) have a difference of at least one foot in
foundation height (Appendix A1).

NSI 2.0 shows 19 slab, eight crawlspace, and one basement
foundation buildings, while BAD reports 20 slab and nine crawl
foundation buildings (Appendix B1). Importantly, the two
building inventories do not agree on the foundation type, as
the chi-square tests of independence reveal no relationship
between the foundation type as reported in NSI 2.0 vs BAD
(p-value � 0.684). At the individual building scale, 39.29 percent
of the building foundation types (11 of 28) differ between NSI 2.0
and BAD (Appendix B1).

Surprisingly, and seemingly a sign of inaccuracy of NSI 2.0, the
chi-square test detects no relationship between the number of
stories as reported by NSI 2.0 vs BAD (p-value � 1.0). At the
individual building scale, 39.29 percent of the homes (11 out of
28) have an inconsistent number of stories reported in NSI 2.0 vs
GSV (Appendix C1). Only two buildings have an inconsistent
number of stories reported in JPBI vs GSV (Appendix C1). GSV
and JPBI show 23 one-story and six two-story buildings whereas

NSI 2.0 reports 19 one-story and nine two-story buildings
(Appendix C1).

As described in Table 5 and shown in Appendix D1, NSI 2.0
reports the same square footage for all buildings in the study area
with the same number of stories. Mean square footage is 1,517 in
NSI 2.0 and 2,202 in BAD, with ranges from 1,148 (one-story) to
2,296 (two-story) and from 1,490 to 3,458 in NSI 2.0 and BAD,
respectively. The difference in square footage between NSI 2.0
and BAD is normally distributed (p-value � 0.549 using the
Shapiro-Wilk normality test), and the paired t-test for difference
of means suggests a significant difference in mean area of
buildings as reported by NSI 2.0 vs BAD (p-value < 0.001). At
the individual building scale, NSI 2.0 estimates a smaller building
area than BAD, especially for one-story buildings, but BAD is
likely to be more accurate because of its dependence on JPBI data.
BAD reports a greater square footage in 82.14 percent of the
buildings (23 of 28; Appendix D1). Also, in 82.14 percent of the
cases (23 out of 28), the difference in square footage between the
two data sources exceeds 25 percent (Appendix D1), though this
is for only 22 of the same 23 buildings as had been reported as
having a greater square footage.

NSI 2.0 reports the same building replacement cost for all
buildings in the study area with the same number of stories
(Table 5). The mean building replacement cost is $108,588 and
$199,781 in NSI 2.0 and BAD (respectively), with ranges from
$77,265 to $186,924 and from $146,950 to $293,037 in NSI 2.0
and BAD, respectively. The difference in replacement cost
between NSI 2.0 and BAD is normally distributed (p-value �
0.392 using the Shapiro-Wilk normality test), and the paired
t-test suggests a statistically significantly lower mean building
replacement cost (p-value < 0.001) calculated using NSI 2.0 vs
BAD. At the individual building scale, NSI 2.0 estimates a lower
building replacement cost than 2019 NBCM for 92.85 percent of
the buildings (26 of 28), with 19 of these 26 having NSI 2.0-
estimated building replacement cost at least 65 percent lower than
that based on NBCM (Appendix E1).

Because NSI 2.0 reports the content cost equal to the building
replacement cost (Table 5), content cost is assumed to be the
same for all buildings in the study area with the same number of
stories. Themean building content cost is $108,588 in NSI 2.0 and
$99,890 in BAD, with ranges from $77,265 to $186,924 and from
$73,475 to $146.518 in NSI 2.0 and BAD, respectively. The
difference in content cost between NSI 2.0 and BAD is not
normally distributed (p-value � 0.005 using the Shapiro-Wilk
normality test), and the paired samples Wilcoxon test suggests
that there is no significant difference in median between the

TABLE 5 | Comparison of NSI 2.0, GSV, and JPBI data for the same neighborhood (census block 220510220012004).

Variables NSI 2.0 GSV JPBI

Square footage (SF) Same for all buildings of the same number of stories Varies
Replacement cost Same for all buildings of the same number of stories – Calculated from SF and per sq. ft.

construction cost
Foundation height Same for similar foundation type Varies within and between

foundation type
–

Number of stories Mismatched number of stories for the same buildings
Foundation type Mismatched foundation type for the same buildings
Content cost Equal to structure value Not available
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content cost based on I1 vs I2 (p-value � 0.902). At the individual
building scale, however, NSI 2.0 produces lower content cost
estimates than BAD for one-story buildings, but because NSI 2.0
simply doubles the estimate for two-story buildings as compared
to one-story, NSI 2.0 generates higher content cost estimates than
BAD for two-story buildings, assuming all other building
inventory variables are the same. For 68.85 percent of the
cases (19 of 28), the difference in content cost between the
two building inventories exceeds 20 percent (Appendix F1).

Model Selection Sensitivity
Because neither building nor content loss estimates are distributed
normally for either NSI 2.0-or BAD-generated values (Table 6), and
one-way ANOVA tests are appropriate only for normally distributed
data (Burt et al., 2009), a Kruskal-Wallis test (Burt et al., 2009) is
implemented to test model selection sensitivity. Results suggest that
when using NSI 2.0 data, there is no significant difference in the
median of building loss (L1) and (in a separate analysis) content loss
(L2) among runs of Hazus Level 2, FAST, and HEC-FIA (S1, S2, and
S3, respectively), holding DDF and flood return period constant,
regardless of which DDF and return period are selected (Table 7).
Likewise, use of BAD generates the same result – no significant
difference in median of building loss or of content loss (Table 7).

However, at the individual building scale while using the same
building inventory data to the extent possible (see again Table 4), the
software selection may cause building and (in a separate analysis)
content loss to differ in the case of some buildings (Appendix G1-G8).

Building Inventory Sensitivity
The building inventory sensitivity analysis quantifies the impact of
the building inventory selection (NSI 2.0 vs BAD) for building and
content loss using the three models (Hazus Level 2, FAST, and
HEC-FIA) by flood return period (10-, 50-, 100-, and 500-yr) using
the default DDF for that model. Most of the combinations of model
and flood return period produce a non-normal distribution
(Table 8, Columns 3 and 4). Thus, both non-parametric (paired
samples Wilcoxon) and parametric (pairwise t-test) tests are
implemented on the comparison of the median (for the non-
parametric test) or mean (for the parametric test) building and
content loss by building inventory, for the various combinations of
models and return periods. The results are largely the same
regardless of whether the paired samples Wilcoxon (Table 8,
Columns 5 and 6) or pairwise t-test (Table 8, Columns 7 and
8) are used. Specifically, there are significant differences for all
models and return periods regarding building loss, but no
significant differences in median (or mean) content loss for any
of the three models over any of the four flood return periods
(Table 8).

Despite these results for the difference of medians/means between
the two building inventories, building and content losses at the
individual building scale tell a different story (Appendix H1-H6).

DDF Sensitivity
Running a flood loss estimation model for each of the 29
buildings after inputting another model’s default DDF for each

TABLE 6 | p-values of Shapiro-Wilk normality test (with values <0.05 representing a non-normal distribution) of model sensitivity among Hazus Level 2, FAST, and HEC-FIA.

Flood Return period Depth damage function National structure inventory 2.0 Best available data

Building loss Content loss Building loss Content loss

10-Yr Hazus/FAST <0.001 <0.001 <0.001 <0.001
Hec-FIA <0.001 <0.001 <0.001 <0.001

50-Yr Hazus/FAST <0.001 <0.001 <0.001 <0.001
Hec-FIA <0.001 <0.001 <0.001 <0.001

100-Yr Hazus/FAST <0.001 <0.001 <0.001 <0.001
Hec-FIA <0.001 <0.001 <0.001 <0.001

500-Yr Hazus/FAST <0.001 <0.001 <0.001 <0.001
Hec-FIA <0.001 <0.001 <0.001 <0.001

TABLE 7 | p-values of Kruskal-Wallis test (with significant differences at p < 0.05 denoted by an asterisk) on difference of medians of building and content losses (separately)
calculated by Hazus Level 2, FAST, and HEC-FIA, holding return period, building inventory, and depth-damage function constant.

Flood return period Depth damage function National structure inventory 2.0 Best available data

Building loss Content loss Building loss Content loss

10-Yr Hazus/FAST 0.909 0.595 0.995 0.866
Hec-FIA 0.977 0.845 0.985 0.905

50-Yr Hazus/FAST 0.731 0.369 0.831 0.503
Hec-FIA 0.801 0.803 0.840 0.783

100-Yr Hazus/FAST 0.638 0.233 0.728 0.484
Hec-FIA 0.760 0.687 0.794 0.779

500-Yr Hazus/FAST 0.182 0.103 0.469 0.469
Hec-FIA 0.420 0.376 0.713 0.755
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building’s unique set of building inventory attributes can
produce substantially different loss estimates (for both
building and content loss) from those produced when the
original model is run using its own default DDF for each
building. Building and content losses for some combinations
of building inventory and return period produce non-normal
distributions (Columns 3 and 4 of Tables 9–11). Therefore,
both the paired samples Wilcoxon and pairwise t-test are
implemented on the comparison of the mean building and
content loss by DDF, for the various combinations of building
inventory and return period. Median or mean loss estimates
using Hazus Level 2 (which has the same as the default DDF as
used in FAST) vs HEC-FIA default DDFs of building loss and
(in a separate analysis) content loss while running Hazus Level
2 model indicate some significant differences by building
inventory (NSI 2.0 and BAD) and flood depth return
periods (Table 9, Columns 5 through 8). The most
significant differences are for building loss at higher flood
return periods (i.e., 50-, 100-, and 500-yr), but with no
significant difference at a 10-yr return period. Significant
differences exist in the median and mean content loss (L2)

at all combinations of building inventory and return period
(Table 9, Columns 5 through 8).

Running FAST gives similar results to running Hazus Level 2
regarding DDF sensitivity. For building loss estimates, the FAST
default DDFs provide different loss estimates than when FAST is
run while overwriting HEC-FIA’s default DDFs for the
corresponding set of building attributes. Statistically significantly
different building loss estimates result from runs using the DDFs at
the 50-, 100-, and 500-yr return periods, for both NSI 2.0 and for
BAD building inventories. (Table 10, Column 5). At a 10-yr flood
depth, no significant differences in DDF for building losses are
observed (Table 10, Column 5). Regarding mean content loss (L2),
a significant difference exists at all combinations of building
inventory and return period (Table 10, Columns 6 and 8).

Running HEC-FIA gives the same statistical test results as
running FAST, regarding DDF sensitivity for both building and
content losses (Table 11). Moreover, all three models give the
same result regarding content losses (Tables 9–11). At the
individual building scale the DDF selection may cause
building and (in a separate analysis) content loss to differ for
all buildings (Appendix I1-I12).

TABLE 8 | p-values of Shapiro-Wilk normality test (with values <0.05 representing a non-normal distribution) for the distribution of differences between NSI 2.0- and BAD-
generated loss estimates (for building and content, separately), and paired samples Wilcoxon and pairwise t-test (with significant differences at p < 0.05 denoted by an
asterisk) of the difference between NSI 2.0- and BAD-generated losses.

Flood return
period

Model/Software Shapiro-Wilk Paired samples Wilcoxon Pairwise t-test

Building loss Content loss Building loss Content loss Building loss Content loss

10-Yr Hazus Level 2 0.247 0.003 0.017* 0.493 0.021* 0.720
FAST 0.016 0.029 0.018* 0.629 0.007* 0.966
HEC-FIA 0.014 0.010 0.029* 0.859 0.010* 0.669

50-Yr Hazus Level 2 0.040 0.010 0.009* 0.661 0.010* 0.742
FAST 0.005 0.061 0.012* 0.622 0.002* 0.838
HEC-FIA 0.004 0.013 0.015* 0.589 0.003* 0.839

100-Yr Hazus Level 2 0.025 0.015 0.008* 0.728 0.008* 0.676
FAST 0.007 0.139 0.004* 0.522 0.001* 0.746
HEC-FIA 0.002 0.023 0.009* 0.522 0.002* 0.945

500-Yr Hazus Level 2 0.019 0.017 0.006* 0.991 0.005* 0.577
FAST 0.011 0.090 <0.001* 0.465 <0.001* 0.645
HEC-FIA 0.003 0.042 0.002* 0.452 0.001* 0.951

TABLE 9 | p-values of Shapiro-Wilk normality test (with values <0.05 representing a non-normal distribution) for the distribution of differences between NSI 2.0- and BAD-
generated building and content losses, and paired samplesWilcoxon and pairwise t-test (with significant differences at p < 0.05 denoted by an asterisk) of default DDF in
Hazus Level 2 (which is the same as the default DDF in FAST) vs HEC-FIA as input in the Hazus Level 2.

Return period Building inventory Shapiro-Wilk Paired samples Wilcoxon Pairwise t-test

Building loss Content loss Building loss Content loss Building loss Content loss

10-Yr NSI 2.0 0.418 0.018 0.891 <0.001* 0.868 <0.001*
BAD 0.040 0.009 0.754 <0.001* 0.679 <0.001*

50-Yr NSI 2.0 0.160 0.0699 0.027* <0.001* 0.009* <0.001*
BAD 0.002 0.026 <0.001* <0.001* <0.001* <0.001*

100-Yr NSI 2.0 0.074 0.102 0.008* <0.001* <0.001* <0.001*
BAD 0.007 0.012 <0.001* <0.001* <0.001* <0.001*

500-Yr NSI 2.0 0.023 0.271 0.006* <0.001* 0.004* <0.001*
BAD <0.001 0.006 <0.001* <0.001* <0.001* <0.001*
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DISCUSSION

Building Inventory Comparison
Even though the use of BAD seems to offer no improvement overNSI
2.0 in community-scale analysis of building and content loss (as
evidenced by the lack of significant difference between the medians in
foundation height), the variability in the data sets (i.e., NSI vs BAD)
can make a major difference for individual homeowners when
determining their vulnerability to flood losses (Appendix A2).
Intuitively, the foundation height would seem to have the greatest
impact on building/content loss from among the six variables that
compose the building inventory. Thus, community-level planners
may not see major differences in the two input data sets, as they are
concerned with the aggregate impact (for which there is no difference
of medians in the two data sets vis-à-vis foundation height). However,
an individual homeowner should be cautious about the selection of
input data set regarding foundation height.

Because of the low elevation and relief of the study area and the
proclivity for flooding, there are no residences with a basement
foundation in the study area or in coastal Louisiana. Yet the NSI
2.0 dataset reports that one of the 28 buildings (Building ID 455494)
has a basement; this is likely an example of spurious data. Because the
software-selected DDF to be used to calculate building and content
flood loss for a given building is based on occupancy type, foundation
type, and number of stories, an erroneous foundation type could
possibly cause a substantial error in building and content DDF, which
could theoretically give an inaccurate estimate of building and content
loss (Appendix B2; Building ID 455494). However, only the presence
or absence of a basement seems tomatter in the calculation of building

and content losses for any return period, as shown inAppendix B2 for
the 500-yr flood return period.

While it may seem surprising that the NSI 2.0 and BAD report
so many differences in number of stories, this result likely occurs
because NSI 2.0 incorrectly counts some elevated one-story
homes as two-story, based on LIDAR-collected local elevation
differences. Because the set of DDFs for a building is based on
foundation type, number of stories, and occupancy type, an
erroneous number of stories can cause an incorrect building
and content DDF to be used, thereby estimating building and
content loss inaccurately (Appendix C2).

The building replacement cost as estimated in BAD is a
function of square footage and per square foot construction
cost, and content cost is half of the building replacement cost
in BAD. Therefore, erroneous square footage information will
cause errors in estimation of replacement and content cost, which
can in turn lead to inaccurate estimation of building and content
damage by flood (Appendix E2 and F2).

The statistically significantly lower estimate of the building
replacement cost by NSI 2.0 as compared to BAD has several
important implications. First, because the building replacement
cost is a key player (along with DDF and flood depth) in
determining building loss, inadequate estimates can have
important consequences for both the homeowner and for
actuarial interests. One potential discrepancy is the erroneous
assumption in NSI 2.0 that all homes in the study area that have
the same number of stories also have the same area and building
replacement cost. By contrast, BAD considers the area and
building replacement cost independently from the number of

TABLE 10 | As in Table 9, but for input in the FAST.

Return period Building inventory Shapiro-Wilk Paired samples Wilcoxon Pairwise t-test

Building loss Content loss Building loss Content loss Building loss Content loss

10-Yr NSI 2.0 <0.001 0.067 0.131 0.001* 0.2436 <0.001*
BAD 0.001 0.014 0.154 <0.001* 0.1636 <0.001*

50-Yr NSI 2.0 <0.001 0.059 0.006* <0.001* 0.0874 <0.001*
BAD 0.003 0.034 0.012* <0.001* 0.04119* <0.001*

100-Yr NSI 2.0 <0.001 0.073 <0.001* <0.001* 0.03346* <0.001*
BAD <0.001 0.009 <0.001* <0.001* 0.005368* <0.001*

500-Yr NSI 2.0 <0.001 0.029 0.006* <0.001* 0.01301* <0.001*
BAD <0.001 0.008 <0.001* <0.001* 0.01062* <0.001*

TABLE 11 | As in Table 9, but for input in the HEC-FIA.

Return period Building inventory Shapiro-Wilk Paired samples Wilcoxon Pairwise t-test

Building loss Content loss Building loss Content loss Building loss Content loss

10-Yr NSI 2.0 <0.001 0.066 0.131 0.001* 0.244 <0.001*
BAD 0.002 0.014 0.154 <0.001* 0.163 <0.001*

50-Yr NSI 2.0 <0.001 0.059 0.006* <0.001* 0.087 <0.001*
BAD 0.003 0.034 0.012* <0.001* 0.042* <0.001*

100-Yr NSI 2.0 <0.001 0.073 <0.001* <0.001* 0.033* <0.001*
BAD <0.001 0.009 <0.001* <0.001* 0.005* <0.001*

500-Yr NSI 2.0 <0.001 0.029 0.006* <0.001* 0.013* <0.001*
BAD <0.001 0.008 <0.001* <0.001* 0.011* <0.001*
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stories, potentially yielding a better estimate. However, further,
detailed research at the individual building scale is needed to
identify with certainty that BAD provides more accurate
estimates. Changing only the building replacement cost can
change the building loss estimates substantially (Appendix E2).

The implications of erroneous content cost estimates are
similar to that for building replacement cost. By considering
that content loss for a two-story home is not necessarily double
that of a one-story home with other identical attributes, BAD can
provide a more customized loss estimate of content loss. This can
be important because some homeowners of two-story homes may
keep more valuable possessions (e.g., jewelry, antique furniture)
on the second floor, while others may have less valuable
possessions (e.g., children’s furniture) or vacant rooms
(especially for residents with physical disabilities) on the
second floor. This is particularly important in study areas such
as the one chosen here, where diverse family situations (e.g.,
families with young children, empty-nesters, and retirees) live in
the same neighborhood.

Interestingly, NSI 2.0 data show the same content cost for
identical-story buildings because the building footprints are
identical in NSI 2.0 for all 28 buildings within the census
block. By contrast, the content cost according to JPBI (and
therefore BAD) varies within identical-story buildings, as the
building footprint and square footage vary within the census
block. Changing only the content cost can change the content loss
estimates substantially (Appendix F2).

Model Selection Sensitivity
The three leading models each have their advantages in certain
situations. FAST is easy to use compared to Hazus and HEC-FIA;
only the flood depth grid and basic building information is
needed to compute the building and content loss for a flood
event at the individual building level. Hazus level 1 is preferable
when flood depth and building information is lacking; flood
simulation is made from USGS DEM and built-in stream
networks, and the default building inventory (GBS) is used to
calculate flood loss at the census block level. Hazus level 2 is
preferable when either flood depth or building information is
available. Hazus level 3 is preferable when detailed engineering
data at the local level is available. In general, Hazus calculates loss
and damage to buildings, vehicles, bridges, critical facilities, and
agricultural crops. HEC-FIA is useful for flood loss modeling
when DEM, study area, flood depth, and basic building
information are available; both NSI and parcel data are
compatible with HEC-FIA, which can estimate indirect loss,
human fatalities, agricultural damage, vehicle damage, and
building and content damage.

The lack of significant difference in median building or
content loss based on the model selected suggests that
researchers and environmental planners may feel comfortable
using any of the three leading models to assess building and/or
content loss due to flood. However, at the individual building
level, any difference in building loss and/or content loss based on
the model selection can have important implications for flood
hazard assessment and post-disaster recovery. The homeowner
should be aware that premiums set based on a particular model

output for a swath of homes may not necessarily be the same as if
they were set at the individual scale based on other model output.
The difference may come from using a different building
inventory or DDF. Moreover, FAST and HEC-FIA results are
similar at the individual level (Appendices G1 through G8)
because their building inventory attribute input requirements
are similarly minimal. However, Hazus Level 2 requires more
extensive building inventory attributes for input, which results in
different estimates at the individual building level.

Building Inventory Sensitivity
The noteworthy, impressive, and consistent result of significant
differences between mean (median) building loss for all 12
combinations of model and return period, based on the
selection of NSI 2.0 vs BAD is explainable based on several
factors. First and foremost, the fact that BAD offers numerous
improvements in building inventory variables, particularly
building replacement cost and foundation height, likely causes
increased precision and accuracy in BAD-based estimates of the
building loss. In all models, calculation of the building loss as a
percentage of the building replacement cost, with the percentage
being a function of the flood depth inside the structure, means
that small differences in flood depth can generate large differences
in the percentage of the building replacement cost. Similarly,
because estimates of foundation height are relatively easily and
frequently improved over NSI 2.0 in BAD, and because
foundation height is critical for determining flood depth inside
the structure, this building inventory variable plays a critical role
in these statistically significant differences between NSI 2.0- and
BAD-based building loss estimates. Other variables, such as
number of stories, can also have an impact on the building
loss. For instance, a two-story house will have a relatively
smaller building loss relative to the total home values for the
same flood elevation, as compared to a one-story home.

Likewise, the equally noteworthy, impressive, and consistent
result of no significant differences between mean (median)
content loss for any of the 12 combinations of model and
return period, based on the selection of NSI 2.0 vs BAD, is
also explainable. Content value comes from building replacement
value, in both inventories, and in general, BAD building
replacement value exceeds that as calculated by NSI 2.0. But
when the content value is calculated, BAD assumes that content
value is only half that of the building value (FEMA 2013) while
NSI 2.0 assumes that content value equals building value. The net
effect of these two factors causes the representation of the mean
(median) content value to be comparable between NSI 2.0 and
BAD (see again Appendix F1) and statistically insignificant
differences. However, insignificant differences in mean
(median) do not necessarily imply comparable content values
at the individual building scale (see again Appendix H1-H6).

Results at the individual building scale also have important
impacts. Despite the significant difference of mean (median) in
building loss depending on the choice of building inventory, at
the individual residence scale there may be small differences in
building loss. Likewise, despite the insignificant difference of
mean (median) in content loss depending on the choice of
building inventory, at the individual residence level, there may
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be large differences in content loss. The implication is that there is
great heterogeneity and uniqueness for loss estimation for
individual homes, even compared to that found by their next-
door neighbor. The “one-size-fits-all” approach to setting
insurance premiums and mitigation recommendations seems
to be inadequate, even in a neighborhood with relatively
homogeneous income and housing.

DDF Sensitivity
Results of the sensitivity analysis suggest that the selection of DDF
can cause building loss estimates to vary substantially at flood
depths for longer return periods. While this study cannot say
which estimates are most accurate, it does show that the
variability in estimates increases at the floods of longer return
periods. This is an important result because obviously these are
the floods that have the greatest impacts on people. Moreover, as
population increases, development continues, and climate change
may cause more frequent and intense extreme precipitation
events in the future (Donat et al., 2016), the variability caused
by DDF selection may increase when modeling future building
loss. As new models with their own default DDFs become
available, it may be more likely that the “correct” DDF can be
known, based on converging output frommultiple models. But in
the meantime, it is important to actuaries, environmental
planners, and homeowners to understand that there is a wide
range of possible building loss estimates for their homes, for
extreme flood events; output from a single model should not be
assumed to be the most precise and accurate value. These
implications are even more applicable to content loss estimates,
as the results show that the DDF can cause content loss to differ
significantly even for flood magnitudes of a 10-yr return period.
Much like the real estate industry uses comparable home values to
appraise a given home, flood loss planners should use multiple
models to estimate flood-related losses to a given home.

STUDY LIMITATIONS

The results of this research must be considered with several
limitations and caveats in mind. First, data are lacking. This
restricts the ability to determine which model provides the “most
correct” output, because no “real-world” data exist that can be
compared to model output. The lack of data also means that flood
magnitudes cannot be expressed in precise rates (i.e., magnitudes
per unit time). A final point about the limitations imposed by the
data scarcity is that model output for longer-duration flood
return periods is particularly uncertain, as the study area has
only been developed for approximately 70 yr.

Changing conditions also limit the effectiveness of the models.
This study area has undergone substantially changing rates of
subsidence similar to an exponential decay curve, as the soft,
organic, swampy soils have compacted over time (Zou et al.,
2016). Likewise, development has continued over time in and
near the study area, and likely will continue into the future. This
development will likely include the introduction of more
impervious surfaces such as concrete that will reduce the
ability of the soil to infiltrate flood water. Likewise, the impact

of changing conditions due to other types of land cover changes,
such as deforestation, is unconsidered. Finally, changes in
effectiveness of the drainage system may also cause differences
that are not taken into account.

SUMMARY AND CONCLUSIONS

As property loss due to flood has continued to skyrocket, flood
loss modeling has become a topic of greatly increased importance.
Three major software packages for such modeling (i.e., FEMA’s
Hazus, FEMA’s FAST, and U.S. Army Corps of Engineers HEC-
FIA) have emerged as the leaders in the U.S.A. and beyond. Yet
research on the effects of building features (i.e., building inventory),
model selection, and the depth-damage functions (DDFs) used in
estimating building and content losses due to the flood hazard is
lacking. This study has sought to fill these research gaps at the
neighborhood- and individual-building scales.

Themethods for addressing these gaps involve many statistical
comparisons. First, data from a “standard” building inventory
used in the hazard mitigation industry (i.e., National Structure
Inventory (NSI) 2.0) is compared against a “homemade,”
improved, building inventory (called “Best Available Data”
here) based on several sources of data now available online.
Then, the sensitivity of that building inventory (i.e., NSI 2.0 vs
BAD) is tested to determine the impact of changing the input
building information. Next, model selection sensitivity is
examined by inputting the same DDF and building inventory.
Finally, the default DDFs from Hazus (which is the same as the
default DDFs in FAST) vs those from HEC-FIA are compared.
These tests aid in understanding why flood loss estimations for
building and content may vary.

The major results from this research can be summarized as
follows:

• Ground-zero information collected at the individual building
scale to comprise BAD offers additional, different, and likely
improved building inventory accuracy regarding foundation
height, foundation type, number of stories, square footage,
building replacement cost, and/or building content cost over
NSI 2.0, the latter of which is often compiled at the community
level with gross estimation of one or more of these variables.

• There is no significant difference in median building and (in
a separate analysis) content loss when different floodmodels
are chosen (Hazus Level 2, FAST, and HEC-FIA); however,
at the individual building scale, the building and content
loss may vary substantially, particularly when comparing
Hazus Level 2 vs FAST and HEC-FIA, because of the
building inventory input variable requirement. The ease
of use of FAST, which requires only a flood depth grid and
building inventory, makes it preferable in many cases.

• A statistically significant difference exists in mean or
median building loss but no significant difference is
found in mean or median content loss, regarding
building inventory input (NSI 2.0 vs BAD). At the
individual building scale, the building and content loss
varies due to difference in foundation height, foundation
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type, number of stories, building replacement cost and
content cost in the building inventory (NSI 2.0 and BAD).

• There is a significant difference in mean or median building
loss at flood depths of higher return periods (i.e., 50-, 100-
and, in a separate analysis, 500-yr) and no significant
difference in mean (median) building loss at a 10-yr
return period (10-yr); however, a significant difference
inmean (median) content loss is found for all return periods.

Future research is needed in several areas, particularly related
to data availability. First, a set of transfer functions that links
precipitation intensity- (i.e., magnitude divided by time-)
frequency relationships (which are well-known) to flood
intensity- (i.e., depth divided by time-) duration (which are
largely unknown) should be derived. Likewise, enhancements
in our ability to forecast and overlay future conditions regarding
climate, development, and land use, should be incorporated into
flood loss models. Furthermore, improved DDFs, including
uncertainty, are needed so that steps can be taken toward
probabilistic rather than deterministic flood loss modeling. In
general, results can be used as a guide assessing losses to other
hazards, thereby enhancing the protection of human life and
property.
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